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ABSTRACT

Al-Momani, Ekhlas yousef., Skew Gaussian Process for non Linear
Regression. Master of Science Thesis, Department of Statistics, Yarmouk
University, 2011. (Supervisor: Dr. Moh’d Taleb Alodat).

In .this thesis, we extend the Gaussian process for regression model by
assuming a skew-Gaussian process prior on the input function and a skew-
Gaussian white noise on the error term. Under these assumptions, the
predictive density of the output function at a new fixed input is obtained in a
closed form. Also, we study the Gaussian process predictor when the errors
depart from Gaussianity to skew-Gaussian white noise. The bias is derived in
a closed form and is studied for some special cases.

We conduct a simulation study to compare the empirical distribution function
of the Gaussian process predictor under Gaussian white noise and skew-

(Gaussian white noise.

Keywords: Conditional distribution; Gaussian process (G); Likelihood
approximation; Monte-Carlo approximation; Multivariate normal distribution;
Predictive density function; Regression model; Regular polygon; Skew-

Gaussian process (SG).
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List of Abbreviations

1- SN,(u,Z,4) : Skew-Normal distribution of n-dimension with mean g,
covariance matrix X, and skewness parameter A.

2- CSNp (1, X,D,v,A) : Closed Skew-Normal distribution of  p-dimension
vﬁm parameters g, X, D, v, A,

3

pdf : The probability density function.

4- CDF : The cumulative density function.

5- N(u,0%) : Normal distribution with mean p and variance g2.
6- N,(#,Z) : Normal distribution of n-dimension with mean g and
covariance matrix Z.
7- ®(.): CDF of the normal distribution.
8- ¢(.): pdf of the normal distribution.
8- Ik, .): The covariance function.

n
10- YT: The transpose of ¥, i.e. if Y = (Y ), then¥YT=(¥; .. Y.

n

11

p(X|Y): The distribution of X givenY,
12- My y: The moment generating function of X given Y.

13

var(X): the variance of X.

14

E(X): The expected value of X, i.e. the mean of X.

vil
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15- mse: mean square error,
16- GPR : Gaussian Process for Regression.
17- SGPR : Skew Gaussian Process for Regression.

18- iid : identically independent distribution.
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CHAPTER ONE
INTRODUCTION

In statistical literature, the assumption of Gaussianity or normality has been
made on statistical models for long time when analyzing spatial data. The
popularity of using Gaussian assuinption is due to the suitable properties that
are possessed by the Gaussian or normal distribution such as closure under
marginal and conditional distributions, as well as the closure under
convolution,

Despite of such nice properties of Gaussian distribution, the assumption of
Gaussianity is hardly fulﬁiled for various spatial processes due to lack of
symmetry, unimodality, etc. Alodat et al. (2010} have given several examples.
Another example is given by Anagreh et al. (2010) where they showed that the
distribution of wind speeds of four stations in Jordan are well-fitted by a skew
normal distribution. It is found that if a statistical model, which is relying on
the Gaussianity assumption, is used to analyze a skewed data, then unrealistic
or nonsensical results will be produced.

A number of methods have been proposed to treat skewed data. All these

methods are relying on Gaussianizing the data, i.e., by transforming the data to
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near Gaussian data. Such transformation method is not recommended due to
the following different reasons (Alodat et al., 2010):

1. It is not easy to find a suitable transformation to achieve normality for
several data sets,

2. Since transformations are usually performed component-wise (where
normality of marginal’s does not guarantee the joint normality), then the
statistical problem might be not invariant under these transformations, which
leads to biased estimates.

3. A transformation on the data may reduce the amount of information in the
original data unless the transformation is a sufficient statistic.

4. Despite of the difficulty in interpreting the transformed data, the data
skewness has some interpretation and hence could not be ignored (Buccianti,
2005).

For these reasons, a non-Gaussian model is needed to capture the skewness in
data. The challenge in using non-Gaussian distribution or assumption on
statistical models is in finding the predictive density formula which is
analytically intractable.

Recently, random processes, that possess a skewness parameter, have been
defined by several researchers. Alodat and Aludaat (2007) employed the skew

normal theory as presented in Genton (2004) to define a new random process,

2
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called the skew-Gaussian process. Also they gave an application real data.
Relying on the multivariate closed-skew normal distribution of Gonzaalez-
Farias et al. (2003), Allard and Navea (2007) defined what they called the
closed skew-normal random field. Other skew random processes or fields are
introduced and applied to real data in (Zhang and El-Sharaawi, 2009), and
(Alodat and Al-Rawwash, 2009).
All these skew processes are defined based on the pioneer skew-normal
distributions introduced in the sequence of papers: Azzalini (1985, 1986),
Azzalini and Dalla valle (1996) and Azzalini and Capitanio, 1999). The
skew-normal or skew-Gaussian distribution is defined as follows. A random
vector X(,xq) is said to have an n —dimentional multivariate skew-normal
distribution if it has the pdf

fr(x) = 2¢,,(x;0,2)0(a"x), x € R (1.1
where ¢,(.;0,%) is the pdf of N,(0,Z), () is the CDF of N(0,1), and
@(nx1) is a vector called the skewness parameter.
It has been shown that the family of skew normal distributions possesses
properties that are close to or coincide with those of normal family, in addition

it contains the normal family, i.e., when & = 0 (Alodat et al., 2010).
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Such properties have attracted researchers to extend the well known statistical
techniques under the skew-normality assumption. To see how this family was
attractive to researchers, please (see Genton, 2004).

There are still a lot of statistical models which have not been yet investigated
or not under skew-normality assumption. The Gaussian process for regression
(GPR) model is a statisticél technique introduced by Neil (1995) to treat a non-
linear regression Y(¢) = f(¢) + e(t) from a Bayesian point of view. Simply,
the technique assumes a Gaussian process as a prior on f(t) while e(t) is
assumed to have a white noise, i.e., an independent Gaussian process is used to
define distribution over functions space, and f(t) is a realization of that
distribution.

Alodat et al. (2010) have extended the GPR model under skew normal
assumptions. They considered two cases. In the first case they assumed a skew
Gaussian process as a prior on f(t) while (t) is left to have a white noise. By
a skew Gaussian process they mean a family of random variables where for
which every subset of size n, the joint pdf of these random variables follows
equation (1.1) . In the second case, they assumed a Gaussian process as a prior
on f(t) while e(t) is assumed to have a skew Gaussian process. In both cases
they derived the predictive density of a new observation. In their analysis of

GPR, they extended the distribution of Amold and Beaver (2002) and then they
4
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showed that it is closed under convolution with normal distribution. This
closure property has convenienced the mathematical derivation and produced a
tractable predictive distribution.

Since the Gaussian family is a sub-family of the skew Gaussian family, then
the skew Gaussian process, as a prior on f(t), allows us to define a distribution
over a more rich family of functions than the Gaussian one. Also, it allows us
to extend the error term in the above regression model to' have a skew
distribution which closer to real world than its Gaussian counterpart,

It appears from extensive literature on Gaussian process for regression that the
GP has a significant applications in various fields of science. It has been
applied to model noisy data and to classify problems arise in Machine learning

for learning the inverse dynamics of a robot arm (Rasmussen and Williams,

2006).

Brahim-Belhouari and Bermak (2004) applied the Gaussian Process Regression
model to predict the future value of a non-stationary time series.
Schmidt et al. (2008) studied the sensitivity of Gaussian process to the choice

of correlation function. Based on a numerical study, they concluded that the

predictions did not differ much amongst the different correlation functions.
Vanhatalo et al. (2009) proposed a GPR with student-t likelihood by

approximating the joint distribution of process values by a student distribution.
5
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The idea beyond this approximation is to make the GPR model robust against
outliers. The model they proposed is analytically intractable.

Kuss (2006) proposed other robust models as alternatives for GPR.

Macke et al. (2010) applied the Gaussian process for regression to estimate the
cortical map of the human brain. They modeled an image arises in their
experiment by a Gaussian process where the activity at each voxel is measured.
Fyfe et al. (2008) have applied the GPR to Canonical correlation analysis with
application to neuron data.

The problem of treating the prediction problem of the non linear regression
Y(t) = f(t) + e(t) from a Bayesian view point when both f(t) and e(t)
follow skew Gaussian processes has not yet been a dressed in the literature. In

this thesis, we will extend their work by assuming two skew Gaussian normal

processes on both () and (t).

In this thesis, we consider the non-linear regression model ¥; = f(t;) + (t;),
i=1,2,..,n, where f(t;)’s are the output values of f(t) and (t;)’s are iid
N(0,7%). We put a skew-Gaussian process prior on the function f(t).

Moreover, we consider the following two prediction problems

(i) Prediction of f(t) at a fixed input ¢.

(ii) Prediction of f(t) at a random input ¢*.

6
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In both cases, it is expected that the predictive densities have no closed forms.
Hence, numerical and analytical approximations are needed. For this we will
use the approximations in section (3.6) to approximate the predictive densities.
Also we will compare the accuracy of these approximations.

The rest of this thesis is organized as follows. In chapter two we give an
introduction to Gaussian processes for regression. Also we give some
definitions on skew normal distribution and skew-Gaussian processes. In
chapter th;ce, we generalize the skew Gaussian process for regression by

assuming a skew Gaussian process on f(t) and another skew Gaussian process

on €(t). Then we derive the predictive density of the output function at new
input. Also, we derive the mean and the variance of the predictive distribution.
Finally, we study the bias mean square error of the prediction for two special
cases under assumption violation. In chapter four, we conduct a simulation
study to compare the new model to the Gaussian one. Also, we apply our
finding to real data. In chapter five, we report our conclusion and we propose

future work.



© Arabic Digital Library - Yarmouk University

CHAPTER TWO
GAUSSIAN AND SKEW-GAUSSIAN PROCESS FOR REGRESSION

In this chapter, we introduce the reader to both Gaussian processes for
regression and multivariate skew normal theory needed in the next chapters for

generalizing the Gaussian processes for regression.

2.1. Gaussian Process for Regression

A family {X(t),t € C},C € R" of random variables is said to constitute a
Gaussian process if for n and ¢,,..,t, €C, the random variables
X, (t), ..., X, (t) have n-dimentional multivariate normal distribution.

A Gaussian process allows us to do a non-parametric treatment of a non-linear
regression from a Bayesian point of view. O’Hagan (1978), was the first to
emﬁloy the Gaussian process in a non-parametric frame work, while an
application of O’Hagan’s work to Bayesian learning in networks has been
appeared in Neal (1995).

The Gaussian process for regression, as proposed by Neil (1995), can Be
illustrated as follows: O’Hagan (1978); Consider a set of training dataD =
{(t1,11), ..., (tn, YD)}, where the input vectors ty, t;, t3,..,4, ECESR"

and their output values ¥;,Y,, ..., ¥, are governed by the non-linear regression
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model ¥; = f(t;) + e(t;), where €(t,), e(t,), ..., €(t,;) are iid Gaussian noises
on C of mean 0 and variance 1, and f(.) is an unknown function. The main
question is “what is the predicted value of f* = f(t"), the value of f(t) at a
new input t*, say?”. To answer this question, a prior distribution is needed
on f(t) i.e.,, A distribution over a set of functions is needed. This prior
distribution should be defined on the class of all functions defined on the space
of t. The set of all sample paths of a Gaussian process on C provides us with a
rich class of such functions.

Assume that f(t), t € C is a Gaussian process with covariance function k(.,.);

ie, for every n andity, t, t3...t, €C, we have f=(f(ty),
o ()" ~ N (0, E), where

k(ty,t)) - k(ty,ty)
= : : .
(k(tw tl) k(tna tn))

A suitable choice for k(.,.) is the following covariance function
1 \T o
k(tuty) = exp (=2 (e — ) A2 (t, - t)) @.1)
For simplicity we may consider A = diag( A%, ...,A2), where Als are the skew-
ness parameters. A covariance function k(.,.) is said to be isotropic if k(¢;, t;)

depends only on the distance ||t; — £;]|. For more information about other types

of covariance functions see Girard et al. (2004).

9
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Since f(t) is a Gaussian process, then the joint pdf of f(t) and f(t*)

(Quinonero-Candela et al., 2003) is

f (F1)
£ty | (09,
()
with
k(t{:tﬂ k(tptn? .k(tpt')
Y=l ktat) ~ k(tats) kit,t)
kt,t) - k(t,t,) k.t
_( z k(t*))
C\KT(t) k)
where
z={k(tut))};,_,;
k(@) = (k(ty, £, ., k(ty, £
and

£ =k(t,t).

Rasmussen (1996) shows that the prediction distribution of f* given t* and D

is Gaussian and is given by:

10
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p(f1E", D)~N (u(t"), o*(t)), (22)
where u(t*) and o?(t*) are the mean and the variance of the Gaussian
predictive distribution are given by:
u(t”) = kT(t*)(Z + t21,)1Y, where

Y - (Y]J Yz, ..'. P Yn)T,
and
a?(t*) = k(t' t") — kT (t)(Z + T21L) " 1k(t).

The distribution (2.2) can be used to draw several inferential statements about
f(t"). For example, when p = 1, a 100(1 — @)% prediction interval for f(t*)

is given by [L, U], where L and U are the solution of

N R

L
f p(f*|E, D) df* =
0
and
[erie a5 =5
14

For GPR, a 100(1 — a)% prediction interval for f* is

KA £ 2, s,

11
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where Z, _ 2 is the 100(1 — a) quantile of N(0,1). Moreover, the mean p(t*)
2

- serves as a predictor for f(t*) given the data D, while the variance a2 (t*) is

the measure of uncertainty in it.
In the next section, we present the multivariate skew-normal distribution which

will be used to define a skew-Gaussian process.

2.2 Multivariate Skew-Normal Distribution
Following Genton et al. (2004), a random vector X = (Xy, X, ..., X,)" is said
to have a p-dimensional skew normal distribution, denoted by X~SN,,(Q, &), if
it is absolutely continuous and has the pdf
f(x) = 2¢,(x; Q(a"x), x € RP, (2.3)
where ¢,(x; Q) denotes the pdf of p-dimensional multivariate normal

distribution with standardized marginals, correlation matrix Q and ®(.) is the
cumulative distribution function of standard normal variate.

To construct a SN, (Q, &), Genton (2004) proposed the following procedure.

LetY = (YI,YZ, ...,Yp)T have a multivariate normal distributions with

standardized marginals, zero mean and correlation matrix ¥. If Yo~N'(0,1) is

independent of ¥, such that [’]’9] ~Npss (o, 3 g)) and 8,,8;,...,5, €

12
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(—1,1), then the random variables Z; = §;|Y,| + fl - 61-2 Y}, have the joint pdf

(2.3), with

T ATyp-1p-1
(1+ATy-13)z

A = diag (\/ 1—8%,..,41— 65),
Q=AW + A27)A,

J]

2
’1—6}

: . . T
where W is a p X p correlation matrix and 4 = (ay, ..., @) , @; = for

j=12,..,p.

Now, we go to present a generalization to the Gaussian process. This

generalization is called the skew-Gaussian process.

2.3 Basic Results on the Multivariate CSN Distribution

Gonza’lez-farias et al. (2003) defines the closed skew-normal distribution as
follows:

Definition 2.1: consider p = 1,g = 1, u € R, D an arbitrary g X p matrix, Z
and A positive definite matrices of dimensions p X p and q X g, respectively.
Then the probability density function (pdf) of the CSN distribution is given

by:
13
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Gpq (y) = C¢p (y; H, I:)(I’q; (D(y - .u); v,A), Yy ERP,
where C is defined via
Cl= O, (0;v,A+ DIDT),

where ¢,,(.;n,9), ©p(.;7,¢) are the pdf and cumulative distribution
function (cdf) of a p —dimentional normal distribution. Here 7 € RP denotes
the mean and) is ap X p covariance matrix. We denote a p —dimentional
random vector distributed according to a CSN distribution with parameters
g, 1, L,D,v,Aby Y~CSN, , (1, Z,D, v, A).

The next four lemmas; concemning the multivariate CSN distribution, will be
used extensively in the sequel. For proofs, see Genton (2004).

Proposition 2.1 If ¥,,..,¥, are independent random wvectors with

Y;~CSNy, o, (i, Z;, Dy, vy, 4;), Then the joint distribution of ¥y, ..., ¥}, is
Y= (¥,",..,.V, )T~ CSN,+ o+ (u*, 2+, D*, v, &),

where

n

Pogt= ) q nt =G BT, B = O X
i=1

+

p_

NgE

i=1

and

14
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_ + T T +-
D+ - ?:1 Di: v = (vlt "'!vﬂ.)Tl AT= ?21 Ai *
also

A®B=(‘3 g).

Proposition 2.2 Let Y~CSN,,(u,%,D,v,A)and A be an nXp(n <p)
matrix of rank n. Then Ay~ CSN, ;(p4, £4, D4, v,4,), where
fa=Ap, X,=AXA", D,=DIATX;?,

and
Ay= A+ DEDT — DEATXPAEDT

Proposition 2.3 IfY~CSN, ,(i, Z, D, v, A), then for two sub vectors ¥, and

Y, where YT =(¥1,Y?) ,Y, is k —dimensional, 1 < k <p, and g, %, D are

partitioned as follows:
k p—k
n= (ﬁ;):—k , 2:=(311 z12) k
X1 Xxn/ p—k
and D,, D, come from
k p—k

D=(D; D; )aq.

Then the conditional distribution of ¥, given ¥ is

15
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CSNp—q(Mz + 2131 (10 — B1), Za21, Do, v = D (g0 — fy), ),
where
D*= D, + D, %, 271,
and
Zr21 = 232 — Z21 L1 %12

Proposition 2.4 IfY~CSN,.(4,%,D,v,A), then the moment generating

function of ¥ is:

®4(DIs;v,A+DEDT) sTu+2sTLs

My(s) = @, (0;v,A+DIDT) ’

s € RP,

Proposition 2.5 If y,, ..., y, are independent random vectors with

yi~CSNp,qi(ui, Z,;,Di, Vl',Ai), i = 1, e, n, then
n

D P~CSN, (' D", 0,8,

i=1
where

qc = ?:1 di, u° = E?:l K, 20 = ?=1 zis
D = (ziDiT: ---nannT)T(Z?=1 ), v = (viT- ---:vnT)Ts

and:

16
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8= A%+ D2 DY — (O, (DE)) L, B (O, (ED/)),
where A*= @, A;, DY =@, D; and E* = @, X,

In spatial case if n = 2 and y;~CSNp, o (u;, Z;, D, v, 4;), i = 1,2, we get

Y1+ ¥Y2~CSNp g, 40, (1 + 12,24 + Zs, D, v, A),

where:

D = (9121(21 + 22)—1) A= (A11 Alz)
Dzzz(zl + zz)—l { AZI AZZ

and
Ay = A1+ D1ED," — D,X,(Z; + )7L, Dy,
Agy =83+ DL, D, — D,%,(%, + L)1, D7,
Az = =D I, (%, +2,)71E,D,"

v = (7717': VzT)T

Lemma 2.,1: If X~SN,, (i, Z, ), then

. _ _:_Z_ — Za
(t)EX—y+J;8, ) T
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(if) Cov(X) = £ — 2857

2.4 Skew Gaussian Process for Regression and Monte Carlo

Approximation

Let X, be a standard normal random variable, which is independent
of X(t), a Gaussian process with mean 0 and variance 1, Alodat and AL-

Rawwash (2009) define the skew Gaussian process Y (t) as follows

Y(£) = 8(0)|X,| + /1 - 82()X(L), t € C C R?,

where §:C — (—1,1) is a function which controls the skewness of the

processes Y (i), i.e., the skewness of the finite dimensional distribution of Y (t).

It can be shown that for every ¢, ;, t3,..,t, €C, the random vector
Y =(Y(t),Y(t2),...Y(t,))" has a multivariate skew Gaussian distribution.
Hence, we may extend the Gaussian process for regression by assuming a skew

normal processes on the function f(t) and on e(t). We will refer to the new

model as skew Gaussian process for regression.

Assume that we are interested in predicting f(t) at t*, where t* is a random

variable such that ¢'~M,(u,,Z.), i.e., we are interested in prediction at a

18
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random input, in this case (Girard et al. 2004), the predictive pdf for f* given

that u,,Z, is

p(f*|u,.2) = [p(f*|t", DIp(t)dt"  (2.3)

The integral in equation (2.3) does not have a closed form. Hence, a closed
form approximation to this integral is needed in order to find inferential
statements about f*.

Moreover the main computational problem in Gaussian process for regression
is the inversion of the matrix ¥ + 72I,, and in obtaining the mean and variance
of the predictive distribution of f* at a random inputt*. Under Gaussian
process for regression; we do have a closed formula for the predictive
density (2.3). For this reason, the next section presents several approximation
methods to approximate the predictive density (2.3) at a random input ¢*.

Next, we propose a Monte carlo approximation to (2.3) as follows:

If we assume that the input variable ¢t* has a Gaussian distribution, i.e.,

t*~N, (1., Z,), then the predictive distribution

p(f*[tar Z. D) = f P(F* |t D)p(t)de"

can be obtained by performing a numerical approximation of the integral, using

the simple Monte-Carlo approach:
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p(ftlﬂ*, z"D) = J‘p(fm[t“‘JD)p(t*)dt:‘Y = %ZTA'LI p(f*vDIt*(r))s

where '@, .. t*™ are independent samples from p(t*).

Before closing this section, we refer to Girard et al. (2002) and Williams and
Rassmussen and (2006) when the reader can find several analytical

approximation techniques to approximate the predictive density of GPR.
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CHPTER THREE

GENERLIZATION OF SKEW-GAUSSIAN PROCESS FOR NON

LINEAR REGRESION

In this chapter, generalization to the skew Gaussian process and skew Gaussian
process for regression are given. Also, the predictive densities at new inputs
under the new processes are derived. Finally, the Gaussian process predictor is

studied under the assumption that the error term €(t) violates the Gaussianity.

3.1 Skew-Gaussian and Skew-White Noise Processes

In this section, we follow an altemnative approach to that of section (2.4) to
define as a skew Gaussian process. We rely on the set of finite dimensional
distribution of a process to define it. The definition of skew Gaussian process
via its finite dimensional will ease the mathematical calculations.

Definition 3.1: A random process Y(t),t € C € RP is said to be a skew-
Gaussian process if for every n € {1,2,3,...} and every ¢,,..,t, €C, the
vector (Y(ty),.., Y(t,))" follows the density (2.3), ie., Y(t) is skew-
Gaussian process if its set of finite dimensional distributions is a subfamily of

the family of distributions defined by (2.3).
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Definition 3.2: A skew-Gaussian process Y (t) possesses fixed skewness in all
directions if for every n and ¢4, ..., t,,, the parameter a in (2.3) takes the form
a=al,, aeR

We assume that for each n and ¢,,..,t, €C, the parameter

n
0= (k(ti, tj))- o where k(.,.) is a given covariance function.
ij=

Definition 3.3: A skew-Gaussian process is called skew-white noise if for
every n and t,,..,t, ECCR"Y € = (e(ty),...,e(t,))T has

SN, (0,721, f1L).

3.2 Joint Density of Data and Output

The aim of this section is to derive the joint density of f* = f(t*) and the data,
For simplicity, we assume that the skew Gaussian processes used here possess
fixed skew Gaussian in all directions. Since f(t) is assumed to have a skew

Gaussian process prior, then

(}{;) ~CSNp411(0, W, al17,,,0,1), e~CSN,,(0,7%1,,$11,0,1),

where 1,,,, denotes the column of one’s of size (n + 1), and 1, is the identity

matrix of size n X n . Since (f

f") is independent of €(t) then by proposition

2.1 we have that
22
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f
(f‘) ~ CSNZTI.+1,2 (’1+, £+, D+,v+, A+),

€

where
’1+ = (OIxn: 0! OIxn T : 'l?+ = (0, O)T ' A+= 12 ’

where 0,,,, is the zero vector of sizen X 1, and

Dt — ( all,, Onxl) g (‘P(nﬂ)x(nﬂ) 0(n+1)xn)

The first step is to find the conditional distribution of f* and Y is to find the
joint pdf of f* and Y. To proceed, we write (¥7, f*)T as a linear combination
of (f7 f* €))7, i,

f
(-0, 7 2)(r)

€

b O ) g

To simplify the notation, let Ami1)x@nsr) = (OT><1 1 05,
n n

straight forward to check that the matrix A is of rank(n + 1). Now, we are

ready to apply proposition 2.2. Hence,

Y f
(f*) =A (f*) ~CSNn+1.2(uAf Za, DA,17+,AA),

€

where
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OT
In Onxl In 1xn
) 0 J=0mninx1

OT

1xXn

X, = AZ*AT
I 0 I V' 4 0 I, 051
=( n nx1 n ) ( (+1)x(n+1) (n+1)xn) or ;
o 1 o)\ O o\ L

_ (Z + 721, k)
kT K*/ (e 1)x(n+1)

To proceed, we need to apply the following matrix identity. Let A be a matrix

which is partitioned as follows:

A A
A= ( 11 12),
Az Ay

where A,; and A,, are invertible square matrices. Then

_ -1 - - -1
A—l — ( (All - A12A221A21) _A1}A12(A22 - A21A13A12) )
= _ . ) i % )
_A221A21 (Au - A12A221A21) (Azz - A21A111A12)

For proof, we refer to Schott (1997). Hence, we find £ as follow:

by

_ ( (E+ 220, —kk" k7)) —E+7,) k(K - KT (2 + .,z;,,)*lk)'l)
T\ pe1gr 2y _ iyt kT 21 y-1g)-
k* 'k (E+‘r I.—kk* "k ) (k* =K (E+721,)" ) (n+1)x(n+1)
The parameter D4 is given by
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D,=D*I*ATE;,

allyy One Yoirxme) Ominxn i n o Onxi .
= T t OT 21 Onxl 1 ZA
0 BILJ\ Ominxn Tl J\ 7%
n nx1

(“1£+1(21 kKT all,, (k7 k)T ;!
Br21T 0 ’

_ (D 11(1xn) Dl?-)
\Dasguny Dz 2)<(n+1),
where
Dy; = a1l (K7 (E + 712, — kk*'KT) " —
al;f'l-l_l(k'l',kt)Tkm—lkT(z +12I, — kk*f1kr)-1’
Dy, =—a17 (T R)TE+12L) h(k* — KT+ 21) k) +
all (KT, k)T (k* = kTE +72L) k)7L,
Dy, = Br1L(Z + 121, — kk* k7))
and

Dy, = — BP1L(Z + v 1) k(k* — KT (Z + 721,) k)L
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Also the parameter Ay= A*+D*EZ+D*" — D+Z+ATE;14X+D*,

where A* = I, can be simplified as follows:

D+E+D+T__.(a1£+1q'1n+1 0 ) ,
2x2

0 np2t?
DtE+AT = (al:ﬂ(z’ ky' “11Tt+1(kT,k*)T)
- 24T s
Friln 0 2x(n+1)
and
A2+D+T - ( a(Z, k)1n+1 ﬂ‘t’zln)
a(kT'k*)ln"’l 0 (n+1)x2

Finally A, takes the following form

a1}, ¥, 0 )

Ay=1 (
a=l2t 0 nf?r?

_ (a1$,+1(z, )T al,Tm(kT,k')T) z-l( a(Z, k)1,
pr21T 0 A \a(kT, k*) 1,4,

_ {1+ alf 1P lney — Wy —Wi;
—W21 1 + nﬁz Z sz ’

where

26
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Wiy = (@15, (07 (E + 2L, — bk RT)
— a1l (KT k)T T (2 + 12,
— kk*TK") 7 ) (@(E, k) L)
+ (—a1%,, (5, k)T (Z + 121,) " k(k* — kT (E +721,) 1K)~
+ally (KT kDT (ke — KT (Z + 120,) ') ) (a (kT k) 1,44)

= a? (15,4 (Z )T (E + 720, — k" 'KT)
— 17 (KT kY kKT (2 + 12, — ke KT) T ) (Z k)
+a?(~12, (Z )T (2 + 121,) k(k" — KT (E + 121,) 1K)
+ 10 (KT DT (e — KT (Z + 721) k) ) (KT, k™)1 044
Wiz = (@153 (5 KN (2 + 120, — kiKY

— a1%, (K7, kY k" T (8 + 120, — kk k7)) B,

= apr? (15, (5K (E + 121, — kk* k7)™

— 1%, (K7, k)T KT (2 + 22, — k™) )1,

Wy = BT215 (X + 121, — kk* 'KT) ' a(Z, k) 1,4,
- B2 1T (X + 21,) Yk (k"

—kT(Z + 12L) k) ta (kT k)1,
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F e

e r L B A i ot 1

[ PO T R

" |

= afr? (15(E + 721, — k' KT)” (5, K) 4

—1215(Z + 121,) 7 k(k* — KT (Z + 121,) k) "1k, k*)1,041)

Wy, = nB2r*1%(E + 121, — kk* ' K™) 1, .

3.3 The predictive density at fixed input

The predictive density of f* given Y is obtained by direct application of

proposition 2.3 withp =n+1and g = 2.

To proceed, consider the following partitions for W, X4, Dy v A,

5 - (.!.'+'c21.rl k) _ (211 212)
4 K k* 2 2/

A= (Au A12)

By Ay
and
D D
D =( 11 12)= D, D)),
A D21 DZZ ( 1 2)
where
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D, = (gu) and D, = (gu) . So the conditional distribution of f*
21/ 2xn 22/ 2x1

given Y is

F*IY~CSNy (kT (E + 121,)"1Y, k™ — kKT (X + 121,) "1k, D,,~D*Y,A,),

3.1

where
D*= D; + D, kK" (E+7%1,)™.

The above analysis shows that the predictive distribution of a new output
follows a closed skew Gaussian distribution. As a special case, this predictive
distribution reduces to (2.2) if the skewness is absent, i.e., ifa = 8 = 0.

The mean of the predictive distribution can serve as a predictor for f(t*) while
its variance var(f*|¥Y) can be used as a measure of uncertainty of this
predictor.

Another predictor of f(t*) is the median of the conditional distribution of f*
given Y.

Neither mean nor the median of the conditional distribution in our case have
simple closed form. In the next section, we derive formulas for the predictive

mean and variance based on the moment generating function.
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3.4 Predictive Mean and Variance

Here we have to find the mean and the variance of f*|Y by applying
Proposition 2.4; to complete this mission, we find the moment generating
function of f*|¥ , hence the moment generating function of f*|¥ is equal to

@,(Dy0%%s; =D'Y, As+ 0" *D; D7) sy +__a-232

SER
&y D20*2s; —D*Y, A+ 6*2D, D, 1) ’

Mf']Y(S)
where o2 =k*—k'(E+121) %k, andp*=k"(E+1%1,)7'Y. Let
®$(.,.) denote the first prtial derivative of ®,(.,.) with respect to the jt

component for j = 1,2. Also, let <D§ij ) (.,.) denote the mixed second partial
derivative of ®,.

Now we have to find the mean and the variance of f*|Y as

0
E(f*|Y) = %Mﬂy(s) |s=0

8 (®,( Dy0*%s; =D'Y, A+ 6**D, D;") porsdotsn),
~ s ®,( D,0%%s; —D*Y, Ay + 0°2D, DZT) s=0

«2
®, (D 120 zs); —D*Y, A, + 02D, D,"
d D,,0"s

“3s|  @,(0,4; —D'Y, Ay + 02D, D,T)

1
SH*+50 *2g2

ls=o
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s.u"+ic'zs2
¢2(02x1; DY, A, + O'*ZDZ DZT) 2 2 ) , Dy

+ 02D, D,7) D;,0™

+ (Dgz)( D,o'%s; —D'Y, A, + ¢*°D, D,") D226") |Is=0

e

(bz( DZO"Z.S'; "'D*Y, AA + O*ZDZ Dz
®,(0,5,; —D*Y, Ay + 62D, D,7

* 1 %2 2
+ o.*zs)es,u +50s ) |s=0

= (DIZO'*ZCD;(,_I)(DZG'ZS; “D*Y, AA + U*ZDZ DzT)
+ D307 0P( Dyo*ls; —D'Y, Ay + 62D, D,T)) + 4t

g+ 0o (Dlchgﬂ( D,0*%s; —D*Y, Ay + 6°2D, D,7) + D 0P (Dyo*%s; —D°Y, A, +
G‘ZDZ DZT)),

where Cbgl) is the first derivative of @, with respect to the first component, and

Cbgz) is the first derivative of @, with respect to the second component.

Also we need to find E(f**|Y) to calculate the variance of f*|Y .
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So

.2
52 D, ((3120-25); —D'Y, Ay + 02D, DZT)
220§

2wy —
E(f IY) ~ As2? ¢2(02x1; -D'Y, A, + o-‘ZDz DZT)

S.u.+170.252

s=0

o, 1 .22
es,u+-i-as

<D2(02x1; =D'Y, Ay + 0°°D; D,

d
=% 3 (68(Daos; D, 1,

+ 2D, ;") Dyz0°°

+ Csz)( DzO"zS; =-D°Y, A, + U‘ZDZ DZT) DZZJ.Z)

o

®,( D,0"%s; —D'Y, B4+ 0°°D, D,
®,(005; —D°Y, Ay + 0*2D, D7

e, 1 .22
+0*%5)es* t2° S) ls=o
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] 1
= — - - ((Dgl)(Dzo"zs; ~D'Y, A,
05\ ©,(0,51; —D*Y, Ay + 6*2D, D;")

+ ¢*2D, D,") D,,c*?

o, 1 .2
+ & Dyo*%s; —D'Y, Ay + 6*7D, D,") Dzzc"")) S +7 0" s

1
q)Z(OZXI; —D*Y, AA + 0*2D2 DZT)

+ (¢°(D.0"s; —D°Y, A,

+ ¢"2D, D,”) D,,0*?
+ 0P D,y0*2s; —D'Y, Ay + 62D, D,") DZZU*Z)) (v

+ o,*zs)es,u*+%a'zsz

3 (&,(D,0*%s; —D*Y, A, + ¢**D, D7 1.
_( 2( 2 A - 2 TZ) ((I—l. +0_.zs)esu_,_zazsz)
0s\ @,(0,5,; —D*Y, Ay + 0*2D, D,")

(q:z( D,0*’s; —D*Y, A, + 0*?D, D,")
®,(02%1; —D*Y, 84 + 6*2D, D,")

1.22

N - 2
«2 SU"+=0""s
+o*e 2 ) [s=0
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- i 2 2
es#+20' 5

= (d)gu)( D,a*%s; —D*Y, A,

('DZ(OZXI; —D*Y, AA + J*ZDZ DZT)

+ 6*2D, D,")( Dyp0*%)’

+ 8P (Dy0*2s; —=D'Y, Ay + 0°2D, D,7) D1,0*2 Dyyo™?
(21) «2 x x2 T «2 «2

+®,"(Dy0*s; —D'Y, Ay + 0**D, D;7) Dyy0°% Dyyo

+ (1)522)( Dzatzs; —D‘KY, AA + O'*ZDZ DZT)( DZZO'*Z)Z)

1
q)Z(OZ)(lJI _D'Y, AA + G*ZDZ DZT)

+ (cbgl’( D,0'%s; —D'Y, A,

+ ¢*2D, D,7) D;;0°?
+ @ (Dy0*%s; —D'Y, Ay + 62D, D7) Dzzc*z)) (v

+ U*zs)esu‘+%c"zsz

1
+ (D(l) «2 ., —n*
Q)Z(OZX]_; “D*Y, AA + U*ZDZ DZT)( 2 (DZG s, D Y, AA

+ ¢*?D, D,T) D,,6*?

+ (Dgz)( DZG*ZS; —-D'Y, A, + G"ZDz DZT) DZZU*Z)) ((ﬁu*
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.2 s,u"+la‘zs2
+ a*°s)e z

((IJZ(DZU*ZS; ~D*Y, Ay + 0°2D, DzT)) (( :
‘Dz(ozxﬁ -D'Y, Ay + 0*°D, DZT) £

w, 1 .z 2 1 .2 2
- 2 +50o
+0*25)2e 20 St gl 2 s) ls=0

2(@{"(D,0"%s; DY, Ay + 072D, D;7)(Dy20°2)” +

d)glz)( D,a**s; =D'Y, Ay + 6*°Dy D,7) Dy50** Dypa* +
o3 D,0*%s; —D°Y, Ay + 672D, D,T) Dy2a*? Dyyo? +
(Dgzz)(Dza*zs; _D'Y, A, + o*%D, DzT)(Dzza*z)z) +

4 (cpgﬂ( D,6'%s; —D'Y, Ay + 0°2D, D,7) Di;0°%  +

o Dy0*%s; —=D'Y, Ay + 672D, D,") Dy +p*? + 02,

hence

var(f*|¥) = E(f*2|Y) — (E¢F* 1))’
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=2(0{"(D;0"%s; DY, Ay + 07D, D,7)(Dyp0°2)’
+00P(Dy0"%s; ~D*Y, By + 072D, D,7) Dy56°% Dypo*?
+ 0V D,6%s; —D*Y, By + 02D, D,T) Dyy0°? Dyyot?
+ 0D Dyo*?s; —D'Y, Ay + 02D, D,T)(Dyp07%)’)
+ 4(¢§1’( D,6'%s; ~D'Y, Ay + 62D, D,™) Dyy02
+0P(Dyo*%s; —D°Y, Ay + 6°2D, B,7) Dypo® Pyt + it % + 02
_ (#-

+0°2 ( D, 9°(D,0%%s; —D°Y, A+ 0*2D, D,T)

2
+ Dp®P(D,y0°%s; —D'Y, Ay + 0°2D, DZT)))

= 20'*4((13%11)( Dza-zs; _D*Y, AA + U‘ZDZ DZT) D122 + (Dglz)(Dza'-zs,' '—D‘Y, AA +
02D, D;7) Dy Dy + @8V Dy0"2s; ~D°Y, Ay + 62Dy D,7) Dyp Dyy +

q)gzz)( DZO"ZS: —DY, A+ U‘ZDZ Dzr) DZZZ)Q

where (bgn)

is the derivative of (I)gl) with respect to the first component, and
fbglz) is the derivative of <D§1) with respect to the second component, and tbgz 2

is the derivative of fbg_z) with respect to the first component, and ¢>£22) is the

derivative of ¢ gz) with respect to the second component.
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3.5 Gaussian Process for Regression under Skew-Normal Errors

In this section, it is assumed that the error term €(t) follows a skew white
noise. Under this assumption, we study the effect of this assumption on the
mean and mean squared error of the GPR predictor. To procccd, let f =

k" (Z + v*1,)"Y. In the sequel, the mean, the variance and the bias of f
where ¥ is replaced by ¥ = f + €, with é~N,(0, 72I,,) are denoted by Ea(f),
var®(f) and bias®(f), respectively. Also if Y is replaced by ¥ = f + € with
€~SN,(0,7%I,, 1), then the mean, the variance and the bias are replaced
by ES¢( f ), varSS(f } and bias®%(f), respectively. Under white noise, i.e.,

€~N,(0,721,) we have
ES(f)=kT(E+12I)E(f + 6,
= kT(Z + 121,)71f.
While under the assumption e~SN,,(0,721,, £1,),
ESS(f) = k"(Z + 12L,) E(f + €),
=kTE+121)7f + KT (Z + 721,) " 'Ee.

Since e~SN,(0,7%1,, £1,), then
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2 1281,

E(e) = T

Hence

ESS(f) = E°(f) + KT €+ 72107t 2l

=ES(f)+ b(z% 8%, n) ,say. (2.4)

From the last equation, we conclude that the GPR predictor is increased or
decreased by an amount of [b(t?, B2,n)|. We set the following theorem now

more about the properties of the term (72, f2,n) :

Theorem 3.1 :

2 2 — 2 -1 Em_ 3
The term b(14,8%,n) = k" (E + t°1,) r g has the following
propetties:

(i) limg_,o b(7% %, 1) =0.

N 1 2 _
(ii) limg, 4 |b(7%, B2, )| = - % ETE+121,)™11,.

(i) lim,_ o b(z%3,8%,n) =0.

(iv) Assume that t,, ,, ..., t,, are chosen so that they are the vertices of a

regular polygon and ¢* is located at its center. If k(.,.) is an isotropic
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covariance function, then |b(z2, 8%,n)| > 0 forall r, n and 8 # 0, and

lim,_ o b(72,p%n) = 0.

Moreover, if 37, k(¢, t;) = n>>0(n), with 0(n) — ¢ # 0 as n - oo, then

. 2 2 - E' Tﬂko
lim, . b(T%, B%,n) = TR

Proof : The proof of (i), (ii) and (iii) is easy so we leave it to the reader. To
prove (iv), let ko = k(t;,t*), since t,, t,, ..., t,, are vertices of regular polygon
and k(.,.) is isotropic, then the matrix £ = (k(t;, t,-));‘j=1 is circulant, Also

k = k(t*) = ky1,,. moreover, the matrix (X + t21,,)~! is also circulant.

Therefore

b(z2,2,n) = 5\/7,8_% KT(Z +121,)™11,,

_ |2 _T2Bkg

= =T 17z + 21,)711,,.
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Since (X + t21I,,)) "1 is also circulant and 1,, is an eigen vector of any circulant

matrix, then

E+72) M, =1,
where

L, =1+ X k(t, t).
Hence

2 1Bk, n
b(t%,p%n) = |- ————— —
Fm= Iz 1+ p212n Ln

It is easy to see that |b(z2, 2,n)| > 0 for all non zero values of 7, # and k,,.

If Y2, k(ty, t;) = n®50(n), where O(n) — ¢ # 0, then

2 2Pk n
b(x%, p%n) = |- 2
( :B ’ ) nmtz+n°-50(n)’
2 1Bk Vn

T J1+8212n i.f.o(n) )
Vn

Hence

212 Bky 1

n JpEcz ¢

lim b(z%,B%n) =
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. Jg Bk
T Nm Bl
To show that lim,_, (2, f%,n) =0, we first note that (T + 72I,,)711,, =

1
—1,. Hence
L'ﬂ,

2 TZ Bko n
2 p2 _ _- -
b(T 'ﬁ 'n) AL 1 +B2T2Tl L,

= |2 Bkon =
IR LR OIS I T WEvy

Hence lim,_,, b(7%,B%,n) =0.

3.6 Prediction at Random Input

In this section, we assume that the input vector t*has a normal distribution and
we wish to predict f* = f(t*). Since f*|Y, t*~CSN1,2(y*, o*?, D, —D'Y, AA)
and t*~N,(a, B), then using the total probability law, we write the predictive

density of f* given ¥ as follows:

P(FIY) = foup(FIY, EDp(E)A
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It is difficult, even for GPR, to find a closed form for the integral in the last
equation, so an approximation for p(f*|Y) is needed. Here, we propose the
following Monte Carlo approximation for the predictive distribution at random
input:

p(fIY) = Lup(F IV, E)p(&)d t =~ 3N p(f*|Y, ),

where '@, ..., '™ are independent samples from p(¢*).
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CHAPTER FOUR
SIMUULATION STUDY

In this chapter, we present an algorithm to simulate a realization from a skew-
Gaussian process, i.e. by simulation from its finite dimensional distributions.
Then the algorithm is implemented in a Matlab code to simulate from a GPR

and a SGPR predictors.

4.1 Simulation from SN,,(0, X, 2).
Simulation of a sample path from a skew Gaussian process can be achieved by
sampling from a multivariate skew normal distribution on a smooth grid. To
simulate a random vector from the pdf

f(x;0,%) = 2¢,(x;0,2)P(A7x), x€R",
we may employ the accept-reject method. The accept-reject method as given in
Chrestian and Casella (2004) assumes that the pdf f(x) can be written as

f(x) = cg(x)h(x),

where ¢ 2 1,0 < g(x) < 1,Vx and h(x) is a pdf. If this is the case, then a
random cbservation from f (x) is generated as follows:
1. Generate U from u(0,1).

2. Generate Y from h(x).
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3. IfU < g(Y), then deliver Y as a realization of f(x).
4. Gotostepl.
For the SN,(0;ZX,4) distribution, we may use this algorithm withc = 2,

g(x) = ®(A"x) and h(x) = ¢, (x; 0, ).

4.2 Simulation from CSN,, . (i1, Z, D, v, A)

To simulate a random observation from the SN, o (1, £, D, v, A), it is difficult
to achieve this via the accept-reject method due to the complexity of
calculating g(x) = &,(DT(Y — p); v, A). Instead, we employ the following
algorithm which 1s derived from the definition of the CSN distribution (Genton,

2004; Allard and Naveau, 2007).

(1) Simulate an observation from

U - N,(v,A+D7ED)|U < 0.
(i1) Given U, simulate Z from
N,(-ZD(A+D"ID)"*(U-v),Z—-XID(A+ D"ED)™1DTY).
(iii) Deliver Z from CSN,, , (1, Z, D, v, ).

Also, simulation from U}U < 0 is not an easy task, so an accept-reject method

will be implemented.
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4.3 Simulation results

In this simulation work, a realization of the sample path of the skew Gaussian

process is generated for input function f(t) = E"'tﬁ ,t # 0. Then the

simulated data are substituted in both Gaussian and skew Gaussian predictors.
To see effect of the departure from Gaussianity on the Gaussian predictor, we
plot the distribution function for the two predictors. Figures (4.1) — (4.8) shows

these distribution functions for different values of @, 8 and 7.

1'.__;‘;_.,_c_|s;m=as;=..;=o.| "'1 mmwmmt T~ "1 =000 bets= el ) 1”.::;‘—_04':’;»&;:.&-.;0.;””””
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Figure (4.1):
{a) G and SG predictors with Parameters {b) G and SG predictors with Parameters
a==0.05p8=-50,15andr =0.1. a=-001,f=-5-1,0,5and 7 =0.1.
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{3} G and SG predictors with Parameters
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(a) G and 5G predictors with Parameters

Figure (4.3):

a=2,=-5-205ad7=0.1
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{b) G and SG predictors with Parameters

@ =0.05,8 =—5,0,2,5 and 7 = 0.1.
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(b} G and SG predictors with Parameters

a=5L=-502>5and7=0.1.
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Figure (4.4):
{a) G and SG predictors with Parameters {b) G and SG predictors with Parameters
a=-=0.01,=-50,1505andt = 1. a=0=25,0205andr=1.
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Figure (4.5) G and SG predictors with Parameters @ = 0.5,8 = —5,0,1.5,5 and 7 = 1.
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Figure (4.6):

{a) G and SG predictors with Parameters {b) G and SG predictors with Parameters

a=157=-5-1,0,5and 7 = 1.5. a=4=-502>5andT =15,

ohfo=0 1;bete=Er1a? alfamD 1 bateelHa0m2
- t sy

prpers ey e o T T L e . ap e e

: -

0afrrif-
22 /

Y S T
VW S

Figure (4.7):

{3a) G and SG predictors with Parameters {b) G and 5G predictors with Parameters

a=-01F=-5024and71=2. a=5p8=-502"5adt =2
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Figure (4.8) : G and SG predictors with Parameters @ = 1, = 2 and t = 2, 10.

From figures (4.1) — (4.8), we report the following concluding remarks:

1. If a Gaussian process prior is used on the input function, i.e., @ = 0, then
there is a small difference between the two distributions and this difference is
increasing as a function of |B|. Moreover, the skew Gaussian predictor
distribution is larger than the Gaussian predictor distribution if # < 0 and the
converse is true if 8 > 0. (See Figure 4.2 (a)).

2. The two predictors have about the same distribution functions for small
values of the skewness parameters 7, and f . (See Figures 4.2 (a), (b)).

3. If a Gaussian process is used on the error, i.e., f = 0, then there is no
difference between the two distributions when a < 0, and 7 is small. (See

Figures 4.1, 4.2, 4.3 and 4.4).
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4. For fixed values of a, and moderate values of 1, the difference between the
two distribution is very clear and seems to be an increasing function in |8].(See
Figures 4.4, 4.5)

5. For fixed values of a, and large values of 7, there is a huge difference
between the two distributions. (See Figure 4.8).

6. In general, the skew Gaussian predictor distribution is larger than the
Gaussian predictor distribution. Also the Gaussian predictor is not robust

against departure from Gaussianity.

In figures (4.9) - (4.14) we plot the prediction errors of the Gaussian and the

skew Gaussian predictors versus a, f and 7 as follows:
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Figure (4.9): E(mse) in G and SG predictors with & = 0.5, 1.5, 3, 5.
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Figure (4.10): E(mse) in G and SG predictors versus § = —1,...,3.
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Figure (4.11): E(mse) in G and SG predictors versus @ = 0, ..., 3.
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Figure (4.12) E(mse) in G and SG predictors with = 2and 8 = 0.5,1.5,3,5 versusa = 0, ...,3.

alfa=0.5,bela=0.5;

>
‘D
g
€
=)
4
=}
o
g
>
>
3
&
5
s
5
o
L
E
<
©

4 4 4
il ste=5 Bete=05:
2 :
=15
£ _
e e e T T e
(@) a=0.1,05,1.55and f = 0.5. (b) @a=0.1,05,3,5and f = 1.5.

Figure (4.13): E(mse) in G and SG predictors versus 7 = 0, ..., 4.
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Figure (4.14) : E(mse) in G and SG predictors with @ = 0.1,0.5,2,5 and f = 5 versus 7 =
0,..,4

From these figures, we write the following concluding remarks:

1. For small values of 7, the two predictions have about the same prediction
errors. (See Figures 4.9, 4.11.(a)).

2. The prediction error of the skew Gaussian predictors is less than the
prediction error of the Gaussian predictors when a is increasing and 7 take a
large value. (See Figure 4.10)

3. The difference between two predictors is increased when 7 is increased.
(See Figures 4.13, 4.14)

4. Note figure (6) it is clearly that the E(mse) in skew Gaussian predictor is
less than the E(mse) in Gaussian predictor, and the difference between two
values is increasing when 7 increasing.

In general the value of E(mse) in skew Gaussian predictor is approach from its

value in Gaussian predictor when 7 is small which appear clearly in figures (6),
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(7-a) and (8-a). Another fact that appears in all figures that the value of
E(mse) is small in skew Gaussian predictor and Gaussian predictor when the
parameters are small, and its increasing when the parameters are increasing
but its stile the value of the E(mse) is smaller in skew Gaussian predictor than

its value in Gaussian predictor.
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4.4 Estimation of Hyper Parameters.
The Maximum Likelihood Estimation (MLE) is an estimation to estimate the
parameters. Here we use the MLE to estimate the parameters 7,0, a, §,a and A
i.e. by maximizing the function L{t, 62, a, ) where L denote the pdf of .
Consider the model

Y=X+e€,
where X~SN,(0,Z,a1l,0,1), and e~SN,(0,7%1,,81%,0,1), 1> 0,
and X, € are independent random vectors then we can apply the special case of

Proposition 2.5. When g = 2, we get
Y~CSN,,(0,Z +7%1,,D",0,4"),

where

Do _ C(IEE( I+ Tzln)_l Ao= (A11 AIZ)
BT 1L(E +12)71) A1z A/’

and
Ay =1+ 1121, — o2172( 2 + 721,) 7121,
Az =1+ np%12 — p2r411( X + 721,) 11,

Ay, = —afT?1TEQE + 721,) 7,
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Now when we apply the definition 2.1 we get the likelihood function of the

hyperparameters

®,(D°Y; 0,47
@, (o; 0, A*+D°(T+121,)D

9n2 (Y) = .,T) ¢n(yi 0,X+ Tzln) .
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CHAPTER FIVE
CONCLSIONS AND POSSIBILITYS FOR FUTURE STUDY

In this thesis, the non-linear regression model Y(t) = f(¢) + €(t) has been
tacked from a Bayesian viewpoint by assuming two skew Gaussian processes
on f(t) and €(t). It is shown that, under this assumption, the predictive
density at new input has a closed form. Also, we studied the GPR predictor
under the assumption that the error violates the assumption of Gaussianity. If
the error departs from Gaussianity to skew-Gaussianity, then the GPR
predictor will be affected and may lead to unrealistic estimates. We know that
skew Gaussian process for regression addressed in this thesis has several
advantages over the GPR (see section 4.3). These advantages will attrac us to
continue this work in future. We highlight some of that possible works:

1. Studying the effect of the choice of the covariance function on the skew
Gaussian process predictor.

2. Developing methods for estimating the hyper-parameters of the model.

3. Prediction at several function inputs.
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Appendix

A. MatLab Program for Simulation Study
This program is to finding the predictor values using the distribution in (3.1)

sigma=[];epsi=[];lam=7.6;alfa=1.5;beta=1.5;tau=1.5;a=.5;
miter=1000;
%-----Creating the covaraince matrices ---—----
t=[-5:-1,1:.1:5];ts=6;
sigma=covm(t,lamn,a);
tt=[t,ts];
epsi=covm(tt,lam,a);
ks=a’2;
k=epsi(1:length(t),length(tt));
sigmaA 1=[sigma+tau"2*eye(length(t));k'];
sigmaA2=[k;ks];
sigmaA=[sigmaAl,sigmaA2];
ul 1=alfa*ones(1,length(tt))*[sigma,k]';
ul2=alfa*ones(1,length(tt))*[k',ks]';
u2l=beta*tau”2*ones(1,length(t));
u22=0;ul=lul 1;u21];u2=[ul 2;u22];
u=[ul,u2];
dA=u*inv(sigmaA);
delt=[1+alfa"2*ones(1,length(tt))*epsi*ones(1,length(tt))' 0;
0 1+length(t)*beta”2*tau”2];
deltaA=delt-u*inv(sigmaA)*u’;
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ft=sin(t)./t;
mu=zeros(1,length(t));
vbeta=beta*ones(1,length(t));

ss=[];s=(];smed=[];
for j=1:1000
u=rand(1); _
z=tau*randn(1,length(t}));
while u>normcdf{beta*ones(1,length(t))*z',0,1);
u=rand(1); |
z=tau*randn(1,length(t));
end
y=ft+z;
mus=k"*inv(sigmattau"2*eye(length(t)))*y';
sigs=ks-k"*inv(sigma+tau"2*eye(length(t)))*k;
D1=dA(:,1:length(t));D2=d A(:,length(it));
Ds=D1+D2*k"*inv(sigma+tau2*eye(length(t)));
DD=D2;
vs=-Ds*y';
fstar=];
for i=1:miter
zz=mvnrnd(vs,deltaA,1);
yy=mus+sqrt(sigs)*randn(1);
w=zz'-DD*(yy-mus);
while max(w)>0
zz=mvnrnd(vs,deltaA,1);
yy=mus+sqrt(sigs)*randn(1);
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w=zz'-DD*(yy-mus);
end;
fstar=(fstar;yy];
end;
s=[s;mean(fstar)];

smed=[smed;median(fstar)];

%% %%%%%Gussian Case
sigs=ks-k'*inv(sigma+tau”2*eye(length(t)))*k;
mus=k"*inv(sigma+tau”2*eye(length(t)))*vy';
ss=[ss;mus];

end

[mean(s) var(s)+(mean(s)-sin(ts)/ts)"2]

[mean(ss) var(ss)Hmean(ss)-sin(ts)/ts)"2]
[mean(smed) var(smed)+(mean(smed)-sin(ts)/ts)"2]

sin(ts)/ts

hold on
cdfplot(ss)
cdiplot(s)
cdfplot(smed)
hold off

errorbar(Y, E)
sqrt(2/p1)*tau”2*beta*sqrt(1-+length(t)*beta"2*tau"2)"-
1*k"*inv(sigma-+tau”2*eye(length(t)))*ones(1,length(t))’
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ttt=[t,tsl;
fit=[ft,sin(ts)./ts];
yyy=ly,mean(fstar)];
hold on

plot(ttt,fff)
plot(ttt,yyy,+)

hold off

t=-5:.001:5;

y=sin(t);

I=.5%ones(1,length(t));

u=.5*ones(1,length(t));

hold on

errorbar(t,y-Lt,y+u,+)

plot([t(1), t(100), t(200), t(300)],[y(1), y(100), y(200), y(300)],+)
plot(t,y)

errorbar(t,y,ll,uu)
for i=1:length(t)
for j=1:length(t)
sigma(i,j)=a"2*exp(-abs(t(1)-t(j))"2/2/lam);
end;
end;
tt=[t,ts];
for i=1:length(tt)
for j=1:length(tt)
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epsi(i,j)=a"2*exp(-abs(tt(i)-tt(j))"2/2/lam},
end

end
B. MatLab Program for Computing the Bias

This program is to computing the bias in SG-case and G-case and compare

between them.
sigma=[];epsi=[];lam=1.6;alfa=3.5;
beta=1.5;tau=1.;a=5.;
miter=1000;
Iwr=-1;upr=3;inc=.5;
sk=[1;g=[1];
for beta=lwr:inc:upr
%-—-—Creating the covaraince matrices ----—----
t=[-2:.5:-.05,.05:.5:2];
ys=[Lyg={l;
for ii=1:length(t)

ts=t(i1);
sigma=covm(t,lam,a);
tt=[t,ts];

epsi=covm(tt,lam,a);
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ks=a"2;
k=epsi(1 :length(t),lengthw(t-t));
sigmaAl =[sigma+tau'“2*eye(lengﬂl(t));k'];
sigmaA2=[k;ks];
sigmaA=[sigmaAl,sigmaA2];
ul 1=alfa*ones(1,length(tt))*[sigma,k]’;
ul2=alfa*ones(1,length(tt))*[k',ks];
u2l=beta*tau*2*ones(1,length(t));
u22=0;ul=[ul 1;u21];u2=[ul2;u22];
u=[ul,u2j;
dA=u*inv(sigmaA);
delt=[1+alfa"2*ones(1,length(tt)y*epsi*ones(1,length(tt)) O
0 1+length(t)*beta”2*tau”2];
deltaA=delt-u*inv(sigmaA)*u';
fi=sin(t)./t;
mu=zeros(1,length(t));
vbeta=beta*ones(1,length(t));
u=rand(1);

z=tau*randn(1,length(t));
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while u>normcdf{beta*ones(1,length(t))*z',0,1);
u=rand(1);
z=tau*randn(1,length(t));
end
y=ft+z;
mus=k'*inv(sigma-+tau"2*eye(length(t)))*y’;
sigs=ks-k"*inv(sigma-+tau”2 *eye(length(t)))*k;
D1=dA(,1:length(t));D2=d A(:,length(tt));
Ds=D1+D2*k"*inv(sigma+tau”2*eye(length(t)));
DD=D2,;
vs=-Ds*y';
fstar=[];
for 1=1:miter
zz—mvnmd(vs,deltaA,1);
yy=mus+sqrt(sigs)*randn(1);
w=zz'-DD*(yy-mus);
while max(w)>0
zz=mvnrnd(vs,deltaA,1);

yy=mus+sqrt(sigs)*randn(1);
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w=zz'-DD*(yy-mus);
end;
fstar=[fstar;yy];
end;
ys=lys,mean(fstar)];
sigs=ks-k'*inv(sigma-+tau"2*eye(length(t)))*k;
mus=k'"*inv(sigma-+tau”2*eye(length(t))}*v';
yg=lyg;mus];
end;
sk=[sk;sum((ys-ft).”2)/(length(ys))];
g=[g;sum((vg'™-ft)."2)/(length(ve))l;
end

plot(lwr:inc:upr,sk,',lwr:inc:upr,g,'-")
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